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While the official Association of Tennis Professionals (ATP) computer tennis 
rankings are used to seed players in tournaments, they are not used to predict a 
player’s chance of winning.  However, since the rankings are derived from a points 
rating, an estimate of each player's chance in a head to head contest can be made 
from the difference in the players’ rating points.  Using a year's tournament results, 
a logistic regression model was fitted to the ATP ratings, to estimate the chance of 
winning as a function of the difference in rating points.  Once the draw for a 
tournament is available, the resultant probabilities can be used in a simulation to 
estimate each player’s chances of victory.  The method was applied to the 1998 
Men's Wimbledon, 1998 Men's US Open and the 1999 Men's Australian tennis 
championships. 
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INTRODUCTION 
 

In many sports there is an officially accepted world ranking.  Tennis has its Association of 
Tennis Professionals (ATP) World ranking, golf the Sony World ranking, and soccer its 
Fédération Internationale de Football Association (FIFA) ranking.  While these create some 
measure of a player's or team's success and are sometimes used for seeding or prize money, 
they are not used in any predictive capacity.  They are all based on some underlying points 
accumulation, and usually combine a mixture of qualitative and quantitative estimates.   
 
The ATP tennis ranking is based on tournament and bonus points.  Stefani (1997) gives 
details, but they alter each year.  For 1998, a player gained tournament points depending on 
how far in a tournament he progressed, and the quality of a tournament.  The maximum 
number of points available for any single tournament was 750 for winning a grand slam.  
Below that, tournaments were divided into Super 9, World Series, Challengers and Futures, 
with points allocated according to the prize money offered.  At these last two levels, provision 
of hospitality for players also increased the number of points on offer.  Bonus points were 
also awarded for defeating any player ranked 200 or higher, on a sliding scale.  A maximum 
of 100 bonus points was available for defeating the number one ranked player in a major 
tournament.  Points were summed from a maximum of 14 tournament results in the last 52 
weeks.  The points were updated at the end of each week, and published by the ATP on the 
WEB at www.atptour.com.  In 1997 players’ points ranged from 1 up to 5792 for Pete 
Sampras.  This was made up of 4650 tournament points and 1142 bonus points.  Of particular 
interest to players is the associated rankings, and a player’s primary goal in tennis apart from 
winning a major tournament is to climb the rankings.  These are used to seed players in the 
tournaments, to allow entry into some tournaments, and to allocate some prize money at the 
end of the year.  However they are rarely used for prediction. 
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An exception to the ad hoc rating systems used in most sports is the Elo rating system used in 
chess (Elo, 1978).  This purely quantitative rating system is based on exponential smoothing 
of a player’s rating depending on the actual proportion of victory compared with that 
expected given the ratings of the opponents.  The rating is not only used to rank current 
players, but to compare them with players from other eras.  More importantly in the current 
context, there is a direct relationship in the difference in two players’ ratings and their chance 
of victory - irrespective of the magnitude of the players’ ratings.  Thus a player who is ranked 
100 points above an opponent will have a 64% percent chance of victory.   
 
Various authors have suggested using exponential smoothing methods for rating in other 
sports, such as Strauss and Arnold (1987) for raquetball and Clarke (1994) for squash.  One of 
the difficulties in ranking tennis players is the tournaments are played on different surfaces 
(grass, clay, synthetic etc), and may be indoors or outdoors.  Most players have a favourite 
surface, and their performance level changes with different surfaces.  For football, the fitting 
of linear models via least squares or other methods has provided a prediction method at least 
as good as the expert tipsters (Clarke, 1993; Harville, 1980; Stefani, 1980, 1987; Stefani & 
Clarke, 1992).  These models also include a factor for home advantage, since it is known that 
teams perform better on their home grounds. Given unlimited resources, this method could be 
used to predict tennis results - fit a linear model which incorporates a player rating and a 
surface factor to a margin of victory, and use the resulting estimates for prediction.  However 
the maintenance of such a system would require regular entry of tournament results.  If 
predictions could be produced based on the ATP ratings, the problems of data collection 
would remain with the ATP.  The aim of this study was to 'add value' to the official statistics, 
and produce a reasonable forecasting model.  The strategy was to fit a model which gave the 
head to head chances of victory based on the players’ ratings (or if possible, the difference in 
the ratings).  The official ratings prior to a tournament were used to estimate each player’s 
chance of victory over any other should they meet.  A simple simulation based on the actual 
draw was then implemented to predict a player’s chance of progression throughout the 
tournament or ultimate victory.  This was updated as the tournament progressed. 
 
 

DATA COLLECTION 
 
To fit the model the results of all tournaments for a period, along with the official rating 
points at the start of each tournament were needed.  While the official ATP site 
www.atptour.com updates the weekly rankings and ratings points each week (or after a 
fortnight, when a major tournament is being played), it does not archive the previous ratings.  
However another site (www.neiu.edu/~sgocha/tennis/tennis.htm) maintained by an interested 
tennis buff, had done this.  A second site (gene.wins.uva.nl/~jellekok/tennis/) had the results 
of all tournaments.  The data contained the usual problems of consistency: spelling of players’ 
names was not consistent, and the format changed.  The separate rankings data and the 
tournament data for 1997 were amalgamated into two text files, and a SAS program used to 
read the data, identify the inconsistencies, and finally merge the rankings and tournament 
information into a final single data set.  Some detail was removed, such as the point score of 
tiebreakers, and any incomplete sets.  For instance, in a match where a player retired during 
the second set trailing one set to love, only the first set was used in the modeling process.  
This resulted in a SAS data set containing four variables and 3003 observations (matches).  
For each match played in the year, this contained the rating points of the two players at the 
time of the match, and the result of the match in sets.   
 

Clarke, S. R. and D. Dyte (2000). Using official ratings to simulate major tennis tournaments. International 
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An initial check showed the ATP ranking proved moderately successful in correctly selecting 
the winner of individual matches for the four majors in 1997.  In the Australian Open, the 
higher ranked player won 69.5% of matches.  The corresponding figures for the French Open, 
US Open and Wimbledon were 60.9%, 62.5% and 64.1%.  These figures were within the 
range reported by Stefani (1998) for predictions of other elite sports based on least squares.  
He quotes success rates of 63.4% for US pro football and 68% for Australian rules football.  
This gave some confidence that, at least in predicting the winner, the official rating system 
would not be too far behind a more complicated system we might have developed.  
 
 

MODEL FITTING. 
 
A logistic model was fitted to the data.  If p is the probability of the higher rated player 
winning, then the logit of p or log of the odds ratio is  
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and p → 1 as x → ∞. 
 
Because of the symmetry of the logistic curve with a=0, the order of participants in the data 
set does not affect the modeling results.  That is, x = 200, with a set score of 2 to 1, has 
exactly the same effect in modeling as b = -200 and a set score of 1 to 2. 
 
Initially the model was fitted using the probability of winning a match.  While generally on 
the ATP tour matches are the best of three sets, grand slam tournaments are played as the best 
of five sets.  Since the better player has a greater chance of winning a five set match, two 
models were needed, one for three sets and one for five set matches.  However this meant the 
available data was severely reduced for five set matches, and it was this scenario we were 
particularly interested in.  We decided to model the probability of winning a set.  This had 
several advantages.  It increased our data, removed problems of forfeited matches, and 
allowed the one model to be used for both three and five set match lengths.  It also allowed 
our final simulation model to account for unfinished matches.  Although the probability 
characteristics of tiebreaker and advantage sets differ, for the sake of simplicity both forms 
were treated equally in the modeling process.  In our data, sets played under advantage rules, 
(i.e. the final set of five set matches in three of the majors), accounted for only 96 of 7566 
sets, or 1.3%.   
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The advantages of modeling for sets rather than matches could equally apply to modeling for 
games rather than sets.  However it is well documented that winning a game in men’s tennis 
depends on whether a player is serving or receiving.  Unfortunately the data set contained no 
information on which player served first in the match, or the number of service breaks each 
set.  Both these would be necessary to reconstruct the number of service games each player 
won and lost.   
 
The model was fitted with PROC GENMOD using SAS 6.12 to 7566 observations of the 
difference in the two players' rankings and a 0-1 variable indicating which player won the set.  
This resulted in a formula that would produce the probability of any ranked player winning a 
set against any other player.  The value obtained for b implied that the number one player 
would win about 85% of sets against a newcomer with no points.  This translates into a 94% 
chance of winning a three set match, and a 99% chance of winning a five set match. 
 
 

SIMULATION OF WIMBLEDON. 
 
The 1998 Wimbledon championship was the first major tournament to which the model was 
applied.  Once the draw was made, the tournament was easily simulated.  Given two players, 
the model gave the probability p of the higher ranked player winning a set.  Assuming 
independence (see Pollard, 1983) the chance he will win a five set match in straight sets is p3, 
in four sets 3p3(1-p) and in five sets 6p3(1-p)2.  The chance he will lose is found by replacing 
p with 1-p.  While these formulas could be used to decide the winner in a head to head 
contest, it was decided to simulate at a set level.  Thus a random number was generated to 
decide the winner of each set, and the match result tracked.  This avoided the need for special 
coding to account for incomplete matches.  The simulated winners were then advanced to the 
next round according to the actual draw, until a final winner was determined.   
 
The program was written in qbasic, with results updated at the end of each day.  10 000 runs 
were used to generate estimates of the probabilities of each player winning the tournament or 
making the semi-final.  Each day, the players with the highest estimated chances of winning 
were published on the Internet at www.swin.edu.au/sport/wim98/.  Table 1 gives the pre-
tournament output.  In addition, specific matches of interest were chosen each day, and the 
probability of each of the six possible set scores, shown.  An example, that of the final, is 
shown in Table 2. 
 
The ultimate winner, Pete Sampras, was rated a 25% chance of winning prior to the 
tournament as shown in Table 1.  His chance steadily increased up to 91% immediately prior 
to the final.  On the other hand, the runner up Ivanisevic, did not appear in the daily tables of 
likely winners until after the fifth day, but this was still only part way through the second 
round.  Table 3 gives the comparison of the model predictions and the observed winner and 
length of the 125 completed matches.  Contrary to expectations, the higher ranked player won 
about the expected number of matches – 87 as against 82.7 predicted by the model.  It was 
suggested prior to the simulation, that the unpredictability of grass and the substantial 
percentage of highly rated clay court players, would produce many upsets.  However the 
actual number was within the statistical variation expected.  However, in general matches 
were shorter than expected.  Table 3 shows the number of 3, 4 and 5 set matches.  For both 
the first round and the remainder of the tournament, the number of straight set wins was 
greater than expected.  This remained true when subdivided into straight set wins to 
favourites and non-favourites.  
 

Clarke, S. R. and D. Dyte (2000). Using official ratings to simulate major tennis tournaments. International 
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Table 1 
Pre-tournament estimated percentage chances of making the semi-finals and winning 
Wimbledon, 1998 

 
Player Semi-

finals 
Winner 

Pete Sampras 53.9 24.6 
Marcelo Rios 53.4 22.4 
Petr Korda 49.3 14.4 
Greg Rusedski 37.9 9.3 
Carlos Moya 31.8 7.6 
Pat Rafter 21.8 4.0 
Yevgeny Kafelnikov 15.5 3.2 
Alex Corretja 13.4 2.6 
Jonas Bjorkman 17.1 2.5 
Karol Kucera 11.6 1.8 
Cedric Pioline 10.6 1.6 
Richard Krajicek 9.6 1.4 
Felix Mantilla 8.4 1.2 

 
 

 
Table 2 
Prediction of the 1998 Wimbledon final result  
 

Winner Score Percentage 
chances 

Sampras 3-0 43.3 
Sampras 3-1 31.6 
Sampras 3-2 15.4 
Sampras win 90.7 
Ivanisevic 3-2 5.0 
Ivanisevic 3-1 3.3 
Ivanisevic 3-0 1.4 
Ivanisevic win 9.3 

 

Clarke, S. R. and D. Dyte (2000). Using official ratings to simulate major tennis tournaments. International 
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Table 3 
Number of observed and expected results in completed matches for Wimbledon, 1998 
 

Match Whole Tournament After Round One 
Result Expected Actual Expected Actual 

All 
matches    

3-0 37.4 55 19.5 26 
3-1 46.2 47 23.2 29 
3-2 41.4 23 20.3 8 

Total 125 125 63 63 
     

Favourites     
3-0 28.1 39 15.2 20 
3-1 30.7 36 16.0 22 
3-2 24.0 12 12.0 5 

Total 82.7 87 43.3 47 
     

Upsets     
3-0 9.4 16 4.3 6 
3-1 15.6 11 7.2 7 
3-2 17.4 11 8.3 3 

Total 42.3 38 19.7 16 
 
 

OTHER TOURNAMENTS 
 
The method was also applied to the 1998 US Open and 1999 Australian Open and predictions 
published at www.swin.edu.au/sport/.  Clearly the success of the model, as measured by the 
probability of success given in the early rounds to those players who ultimately progress 
through the tournament, depends on the degree to which results are in accordance with the 
seedings.  Thus for the US Open, five of the quarter finalists and three of the semi-finalists 
were given in our pre-tournament list of 13 players with a better than 1% chance of winning.  
For the Australian Open, where the seeds tumbled rapidly, most quarter finalists did not make 
our list until late in the tournament.  However the real advantage of the simulation is the 
interaction between ranking and draw difficulty.  In Table 1 a player with a higher ranking 
generally has a higher chance of reaching the semi-finals and winning the tournament.  This is 
not always so, particularly as the tournament progresses.  Table 4 gives the estimated chance 
for the US Open of each quarter finalist making the semi-finals and winning the tournament.  
Carlos Moya, at that time ranked lower than Karol Kucera, is given three times the chance of 
winning the tournament.  This is due to Kucera being in the more difficult half of the draw.  
He had to beat Pete Sampras (the 1997 runner up) and probably Pat Rafter (the 1997 winner) 
just to make the final.  At the beginning of the tournament, when the spectre of meeting  

Clarke, S. R. and D. Dyte (2000). Using official ratings to simulate major tennis tournaments. International 
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Sampras and Rafter was a faint possibility, Kucera was given a better chance (3.1%) than 
Moya (2.0%) of winning.  However as the tournament progressed, and Sampras and Rafter 
remained while rivals in Moya's half were eliminated, Moya's chance increased at a greater 
rate than Kucera's.  We also see this effect in the relative chances of playing in the semi-finals 
and finals.  Mark Phillippoussis was given a greater chance of making the semi-finals and 
final than both Kucera and Bjorkman, but less chance of winning the final.  If either of the 
latter made the final then both Sampras and Rafter would have already been eliminated, and 
Kucera or Bjorkman would most likely play an easier opponent in the final than 
Phillippoussis would play.  The total probability of all players from a particular part of the 
draw could be used as a measure of the draw difficulty.  For example, Table 4 shows at the 
quarter final stage the top half (Sampras, Kucera, Rafter and Bjorkman) had a total 
probability of 74.5%, almost three times that of the bottom half.  The simulation thus 
quantifies what the media often discusses.   
 
 
Table 4 
Day 9 estimated percentage chances of making the semi-finals and winning the US Open, 
1998 

 
Player Semi-

finals 
Winner 

Pete Sampras 73.0 36.9 

Patrick Rafter 71.8 27.0 

Carlos Moya 76.2 18.6 

Karol Kucera 27.0 6.0 

Jonas Bjorkman 28.3 4.6 

Mark Philippoussis 55.4 3.4 

Thomas Johansson 44.6 1.9 

Magnus Larsson 23.8 1.6 
 

 
DISCUSSION 

 
Because of the timing, the actual ratings used prior to the tournament were a week out of date.  
However after the event, the simulation was rerun with the actual rating at the time the event 
began.  This produced little change.  One reason might be that many of the top players take a 
week off tournament play prior to slam events to practise.   
  
While the ATP update the players’ rating points after each tournament, it would be possible to 
update them during the tournament.  Since opponents are always at the same stage of the 
tournament, tournament points earned would be the same, and hence would have no effect as 
the model works on the difference in rating.  However the effect of bonus points can be  

Clarke, S. R. and D. Dyte (2000). Using official ratings to simulate major tennis tournaments. International 
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considerable, particularly for players who defeat highly ranked players. Including these points 
as the tournament progressed might allow a lower ranked player to be given a rating more in 
keeping with current form.  Another possibility would be to use an exponential smoothing 
type method during the actual tournament.  This would have the effect of gradually replacing 
a rating based on 'reputation' with one based on current form as the tournament progressed.  It 
would also allow the ease of a player’s win to be taken into account, as such methods 
normally work on a margin of victory.   
 
One problem that needs to be addressed is the under-prediction of the number of straight set 
matches.  There may be several reasons for this.  Although the ATP rating gives a measure of 
a player’s average level throughout the year, on any particular day they may play significantly 
above or below this level.  This introduces more variation than is present in our model and 
may produce more one sided matches than expected.  A second possibility is the presence of a 
‘hot hand’ effect.  A player winning the first set gains confidence and thus has a higher 
probability of winning the next set.  There are several possible methods for tackling this 
problem.  One is to take a Bayesian approach, and alter the rating difference used for each set 
based on the actual set score in the match.  This would require assumptions about the 
variation in tennis player’s level of play from day to day.  A second is to partition our original 
data into five subsets based on the set score (0-0, 0-1, 1-1, 1-2, or 2-2) and fit separate models 
to each data set.  This would give the probability of a player winning the set conditional on 
the set score.  One problem with this approach is the data available for model fitting are 
reduced, particularly for a 2-2 score line.  Alternatively, the method used by Jackson (1993), 
where the odds on a player winning a set are increased by a constant factor for each set they 
are ahead, could be incorporated. 
 
There is also the problem of alternative surfaces to be considered.  It is well documented to 
successfully predict sporting results home advantage must be taken into account .  While 
Holder and Nevill (1997) find little evidence of a home advantage in tennis, it is no accident 
that the semi-finals of the 1998 French open included three Spaniards and a Frenchman.  The 
major reasons given for the existence of a home advantage are usually travel effects, crowd 
effects, and ground familiarity (Courneya & Carron, 1992).  For tennis, there is probably little 
travel effect (even the home players have probably traveled from another international 
tournament), and some crowd effect.  However the major effect is almost certainly ground 
familiarity, or court surface effects.  It is well accepted in tennis that certain playing styles 
suit the different court surfaces, and some players are known as clay court or grass court 
specialists.  Can this be taken into account? 
 
The tournament organisers generally ignore this problem.  The French Open is a good 
example.  During his reign of several years as world number 1, Pete Sampras never won the 
French open, yet was consistently first seed.  Wimbledon is the only tournament which 
departs from the ATP computer rankings in determining seedings.  In this case, a simple 
method that can be applied to the top players is to reallocate points at the start of the 
tournament according to the seedings.  So for example, a clay courter with 3456 points might 
be seeded tenth at Wimbledon by the seedings committee, between two other players with 
2500 and 2600 points.  For the purposes of the model, the clay courter could be allocated 
2550 points.  This has the disadvantage of introducing a subjective element, but would be 
easy to implement.  It also cannot be used for unseeded players.  A more complicated method 
would be to rate all tournaments according to surface, and calculate separate models for each.   

Clarke, S. R. and D. Dyte (2000). Using official ratings to simulate major tennis tournaments. International 
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One advantage of simulation is that the probability of virtually any event of interest can be 
estimated.  While the main interest here was the probability of each player progressing to a 
certain stage, the chance of compound events is easily produced.  The chance of two given 
players meeting, the chance the final will contain an Australian, the chance one player will  
progress further than another, can all be calculated.  With the interest in the ATP rankings, the 
media often speculate on whether one player will pass another.  In this case we are interested 
in the chance one player will gain at least a given number of (bonus and tournament) points  
more than another.  This depends on whom they defeat as well as how far they progress, but 
is easily produced by the simulation.  By interchanging players and re running the simulation 
at the start of the tournament, the advantages and disadvantages due to the draw could also be 
estimated. 
 
Only men's tournaments have been simulated so far.  The authors would like to redress this 
shortcoming, and produce some equality to our Web page by simulating the women's section 
of the major tournaments.  Apart from equality issues, there has been speculation in the press 
that there are fewer upsets in the early rounds of women's tennis.  This implies the pre 
tournament favourites produced by a model based on official ratings should be more 
successful.  However we have not been able to find the necessary archived data to produce an 
analogous model for the Women's Tennis Association ratings.   
 
 

CONCLUSION. 
 
A simulation of Wimbledon based on official ATP rankings produced reasonable results.  The 
simulation could be used to investigate difficulty of the draw, or assist in setting odds.  For 
the two weeks of the tournament it provided an interesting discussion point, and was felt to be 
a worthwhile exercise.  Some further work is needed to better allow for different surfaces, and 
better predict one-sided matches.  The experiment was continued with the 1998 US Open and 
the 1999 Australian Open, and hopefully will continue for selected majors in the future.   
 
While the current study used manual data entry and produced standard output, some work is 
currently being undertaken by colleagues to automate the process.  An editor has been written 
in Java that allows simple updating of the current state of the tournament, including 
unfinished matches.  It is hoped this will be further automated by logging the web sites set up 
by the tournament organizers.  The simulator then performs a million simulations and loads 
the results into a database.  A Java editor will then allow fans world wide to interrogate the 
database using a web browser.  In this way sports followers can obtain up to date estimates of 
any aspect of any player’s chances in the tournament, rather than be restricted to a daily 
update of the statistics the authors think are of interest.   
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